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Summary of Research

Introduction:

As part of a research program directed at the acoustics of advanced subsonic

propulsion systems undertaken at NASA Langley, Duke University was funded to

develop a boundary condition model for bulk-reacting nacelle liners. The overall

objective of the Langley program was to understand and predict noise from advanced

subsonic transport engines and to develop related noise control technology. The overall

technical areas included: fan and propeller source noise, acoustics of ducts and duct

liners, interior noise, subjective acoustics, and systems noise prediction. The Duke effort

was directed toward duct liner acoustics for the developrrTent of analytical methods to

characterize liner behavior in both frequency domain and time domain. A review of duct

acoustics and liner technology can be found in Reference [1 ].

At that time, NASA Langley was investigating the propulsion concept of an

advanced ducted fan, with a large diameter housed inside a relatively short duct. Fan

diameters in excess of ten feet were proposed. The lengths of both the inlet and exhaust

portions of the duct were to be short, probably less than half the fan diameter. The

nacelle itself would be relatively thin-walled for reasons of aerodynamic efficiency. The

blade-passage frequency was expected to be less than 1 kHz, and very likely in the 200 to

300 Hz range. Because of the design constraints of a short duct, a thin nacelle, and long

acoustic wavelengths, the application of effective liner technology would be especially
challenging.

One of the needs of the NASA Langley program was the capability to accurately

and efficiently predict the behavior of the acoustic liner. The traditional point impedance

method was not an adequate model for proposed liner designs. The method was too

restrictive to represent bulk reacting liners and to allow for the characterization of many
possible innovative liner concepts.

In the research effort at Duke, an alternative method, initially developed to handle

bulk reacting layers as described in Reference [2], was extended to apply to a broad range

of liner types. This method included the effect of local gradients along the liner surface,

and was particularly appropriate for situations with flow over the liner and grazing

incidence acoustic fields. In order to utilize time domain computational methods to solve

for the propfan acoustic field, corresponding liner boundary conditions were developed

for time domain solutions rather than frequency domain solutions.



Liner Modeling:

The traditional way to model acoustic liners assumes the surface is point-reacting

and can be represented by a frequency dependent normal incidence impedance. This

characterization is not only functionally simple, but has the significant advantage that the

normal incidence impedance can be measured directly, thereby circumventing the need to

calculate liner properties in a more fundamental manner. However, not all liners behave

as point reacting, particularly in the presence of a grazing sound field.

Some of the liner concepts envisioned as a result of the Langley program were

expected to allow communication through the liner structure. A simple example of this

behavior is provided by a bulk-reacting liner constructed of absorptive porous material.

To represent this liner analytically requires that the appropriate equation for wave

propagation in the liner itself be solved, and conditions on velocity and pressure

continuity be satisfied at the interface between the liner and the exterior acoustic field.

This approach requires that the goveming equation for the porous (and perhaps elastic)

liner material be known, along with the various parameters that characterize the liner

material, such as porosity, flow resistance, sound speed_etc. (some of which are

frequency dependent). In cases where the liner construction is more complex, for

instance a layered structure, modeling the liner would be even more difficult.

For simple porous media liners, References [2] and [3] have demonstrated that a

boundary condition representation is still appropriate under certain conditions, thereby

avoiding the need for a full solution of the wave motion within the liner. The conditions

for applicability of the boundary condition approach require that the wavelength be larger

than the liner thickness, and/or that there be a reasonable degree of internal dissipation to

restrict the region of influence between points on the liner surface. These conditions

were expected to be satisfied in the advanced ducted fan application, which represented a

thin highly absorptive liner.

Porous Media (Brief Tutorial/Review):

The governing equation for acoustic pressure in a porous material simplifies to the form

of the familiar wave equation by defining an effective complex density and sound speed.
These are defined as:

E 1and c e=cp 1- _-22 (2)

Where q_ is the flow resistance (i.e. the pressure drop per unit length of material per unit

mean flow velocity averaged over the total cross-sectional area of the porous material), pp

is the effective gas density of the porous material, and cp is the gas phase speed in the

porous material [Ref. 2]. The wavenumber is:
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The governing equation for pressure in the porous media can then be written as:

V2p + p = 0. (4)

In terms of the effective varlables, the momentum equation is given by:

iCoPe =--Vp.
At normal incidence, the impedance, i.e. the ratio of complex pressure to complex

velocity, at the surface of the porous material is

(5)

at 6, 0, zn p(z=0) oJH= - = -ipec e cot _ (6)
w(z =0) c,

where 0i is the incidence angle from the normal to the surface, H is the thickness of the

porous layer of material, and w is the particle velocity in the direction of the normal, as

shown in Figure 1.
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Figure l. Sketch of porous material.

Boundary Condition Theoretical Development

For incidence angles other than normal incidence, the impedance is zp, where zp is
defined below:

p(z =0)
For6 i SO, z e w(z=O)--i,o --cotkzH (7)kz

The wavenumber component kz is found from the dispersion relation:

2 2 0)2

-k, -k z +---7-=0 (8)
C e

Re-writing the general incidence angle impedance equation, and multiplying and dividing

the right-hand-side by cot[coH/G ]yields:
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Note that the ratio, k_H cot[k_H] ._ 1 when kx=O (i.e. normal impedance), and is

c_ jc°t L c. j

approximately equal to 1 for low frequencies or high flow resistances (q_), From

geometry, the wavenumber component in the liner, kz is given by:

kz = (co/G)[l-(c/G)Esin_O,]12 (10)

Liner of Infinite Thickness

Consider a porous layer of infinite thickness, such that H ---) _, the impedance in this
case becomes:

p(z=0)_ zo - (11)
W(Z = O) - _l-(C/Ce)2Sin _ 0 i

For large flow resistance (_), the ratio _ >> 1 then,
ppco

[ I+l]p(z = O) i

w(z=0)-z, l+-_(c_/c )Zsin20_ (12)

Defining the pressure at the surface, Ps, and the particle velocity at the surface, ws as

Ps = p(z = 0) and w_ = w(z = 0), an approximate equation for p_ can be written as:

P, + lppCp sin O_
2_C0 c _ _ = Z.W_. (13)

(- 0-)2sin2 0, ]The quantity, cZ = k, is the acoustic wavenumber component along the

surface. This result can be re-expressed in terms of spatial variables. Defining the

surface Laplacian operator as:

V_ _ =_ -- (14)
3Zx + 32Y _o

Equation 13 can be rewritten in terms of the surface Laplacian:

p,+l_______(ip_c_ p=z_w_2 (15)

or in general:

p, + e(co)V 2p, = z. (co)w, (16)

-,.,..',:r...'.._¢-:,.- .....



Thin Layer

Now consider instead a thin layer, such that ]-_eHI << 1. The norrnal impedance is

approximately: zn = - ip, c, z/coH. For a thin layer the acoustic wavelength is assumed

to be much greater than the thickness of the porous layer (H). In this limit, an equation

for the surface pressure becomes:

2 2 • 2 _(c, Y-o sin 0,
P' +_-"_;I -_ , = Z,,W,_ (17)

which is the "thin layer" version of Equation (13). Once again a general equation can be

written in terms of the surface Laplacian:

Ps + B(co)V,ZP, = z,,(co)ws (18)

Of course, the B(co) are different functions in the two cases.

In Figures 2 through 4, sound absorption coefficients for different incidence

-angles are plotted versus nondimensional frequency. The_sound absorption coefficients

have been computed using the exact result (Eqn. 9), the thin layer result (Eqn. 17), and

using the normal incidence impedance boundary condition instead of the bulk-reaction

boundary condition. Results are shown for different angles of incidence, 45 ° (moderate

incidence) and 80 ° (grazing incidence) and for different porous materials. Figure 2,

corresponds to high flow resistance, Figure 3 is for a moderate flow resistance, and

Figure 4 is for a low flow resistance. Notice, at high flow resistance there is little

communication within the liner, resulting in only small errors from assuming normal

incidence impedance. However, as the flow resistance decreases, the errors resulting

from the normal incidence assumption increase to unacceptable values. Obviously this is

due to increased communication within the liner (i.e., not a point-reacting material).
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Figure 2. Comparison of absorption coefficients for different incidence angles, for a high flow resistance.
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Extension to Higher Frequency

The general form of the impedance equation (i.e. relating pressure and velocity at the

surface) can be extended to higher frequency. Equation (9) is rewritten here for reference:

( kxZce 2 cot[Coil 1 kzHc°t[kzH]p 1 W2 =-ip, c e w. (9)

;cot j

In previous discussions, the ratio, kzH cot[kzH] was assumed approximately equal to

; LGJ

unity. To extend the boundary condition results to higher frequency, Equation (9) is

rewritten as a ratio of pressure to velocity. Substituting for kzH as defined in Equation

_(10), and expanding the right-hand-side as a Taylor Series in powers of (c/c), leads to the

follOwing approximation:

_-:w(z--_=z"p(z= O) - I1- l(c,/c )2 sin2 6_i+l__(c,/c )4 sin4 t_ +...]-t (19)

In general, this can be written as:

p(z=0) ...]-,Zn[1 + B2 (o))kx 2 + B4 (o))/_x4 + (20)
w(z 0)

Expressing this result using the surface Laplacian:

Ps + g2(o)_Ts2ps +/_4(o))Vs4ps = Zn((l))Ws (21)

In Figures 5 through 8 results are shown comparing the "impedance" (i.e., the

ratio of ps to ws) for the different levels of approximation. Figures 5 and 6 show the real

part and the imaginary part, respectively, over the entire dimensionless frequency range.

In Figures 7 and 8, the scale has been expanded to emphasize the low frequency range.

An absorption coefficient based on these impedance values can be obtained. In

Figures 9 and 10, the corresponding absorption coefficients are shown for the different

boundary condition assumptions. In all cases, assuming normal incidence impedance

results in erroneous results. Assuming a bulk-reacting boundary condition shows

improvement, although it appears that there is little difference between retaining the B4

term and only retaining the B2 term.
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Experimental Determination of Coefficients

The coefficients, B2 and B4 can be determined experimentally in a bulk reaction

duct, by measuring characteristics of the standing wave patterns. This idea is similar to

that of determining normal incidence impedance values from standing wave patterns in

an impedance tube. However, the bulk reaction duct is a different device, and the porous

material is mounted along the sides of the duct. See Figure 11, for a sketch of a bulk

reaction duct. An example of determining the coefficient B2 from a bulk reaction duct is

explained in Reference [3].

1. Measures Phase & Curvature of pressure standing wave pattern

microphones

sample

2. Measures pressure standing wave pattern as a function of distance

spea_/]

sample

Figure 11. Sketch of a bulk reaction duct (2 possibilities).

For a duct of height h, solution of the wave equation in the duct and application of

the momentum equation result in an expression for the surface impedance:

P(z = O) - iPo ckcot(k_h ) (22)

However, the surface impedance from the above boundary condition derivation is:

p(z =0)_ Pocz,(co) (22)

w(z=O) (l+B2(co)k z +B,(co)k,4)

in terms of the Bulk Reaction Coefficients, Be and B4. As explained in Reference [3] the

coefficients are determined from standing wave patterns. Example standing wave

patterns are shown in Figure 12 for porous materials with different flow resistances.
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Figure 12. Sample standing wave patterns from materials with different flow resistances.

-Time Domain Boundary Condition

A very important issue was the development of the corresponding boundary

conditions for use in a time domain analysis, since a time domain approach may be used

to analyze the acoustic field within the nacelle. The approach taken was to express the

time domain boundary condition in terms of an impulse response function. The impulse

response function used generated the surface velocity time history for an impulsive input

in surface pressure (and more generally, in terms of step inputs in spatial derivatives of

pressure). The liner response to an arbitrary pressure field could then be constructed in

terms of a superposition integral. In such a formulation, the surface normal velocity

would depend on an integral of the time rate of change of the surface pressure and its

derivatives weighted with the time delayed impulse response function.

This approach was similar to using a convolution or a superposition integral. The

impulse response function itself forms a Fourier transform pair with a quantity involving

the frequency domain boundary response function, essentially the boundary condition of

the general form described by Equation (21). The derivation of a time domain boundary

condition follows:

Convert from frequency to time domain by Fourier Transforms

f(co)= _f(t)e-'_dt and f(t)= f(co)e+_d(o (22)

In the frequency domain, the boundary condition can be written as:

B4(O))-- 4
w,(x,y, co)=lp,(x,y,co)+B2(c°)V 2 (x,y, co)+--V s p,(x,y,co) (23)zn zn p'
Applying the inverse transform to Equation (23):
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2_ 2z_

1 7B:(ro),-,2 1 O.))eiOXdo) 1 +_B4((.O)r_4 /
+-- j z--_)v, p.l.x,y,co) d°_dco2,z !. z. (co) v, p, tx, y. 2_z .....

(24)

Similarly, the surface Laplacian operators operating on the surface pressure can be transformed:

V. 4 p.(x,y,o))= IV, 4 p.(x,y,t)e-i°_dt (25)

v (x, o0:fv, p,, p, y, (x, y,t)e-'°_dt (26)

The Fourier transform of the time-dependent pressure is:
4-o*

Ps (x, y,(O)= f p, (x, y,t)e-i°_dt (27)

Using Equations (25) through (27) in Equation (24) yields:

7-- rl-- I 1 -- +- m --w,(x,v,,)= fp_(x,y,r]-- f--e'_('-_)dcoldr+ fV,=p,(x y, co_ I m I TB.(co)e,.(,_Odcoldr
" J 2x a z. J ' -. _.-- "L -- J -- t 2n" J G(CO) J ,I Y' __J z.-_ J

(28)

where the Impulse Response Functions are given by the terms in square brackets.

Defining the Impulse Response Functions as, I0, I2, [4:

1 T1__e...dco (29)lo(S)=
2¢r _oz.

I. (s) = ._m T B=(co)e.._dco (30)
" 2to k Z.(co)

=l T B.(co) e.O.dco (31)
140) 2x k z,(co)

Equation (28) can be re-written in terms of the Impulse Response Functions:

%(x, y,t)= Sp.(x, y,v)l (t-v)dv+ "S .V2p,(x, y, co)12(t-v)dv+ _ .V4p.(x, y, coX_(t-z")d1: (32)

where, s = (t - Z ).

The impulsive pressure at the surface is given by (as shown in Figure 13):

p,(x,y,t)=e(x,y_(t-z) (33)

The integrals in Equation (32) can be evaluated using contour integration (see Figure 14).
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Figure 13. Sketch of impulsive pressure applied to surface of liner of thickness H.
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The first two integrals corresponding to the impulse response functions evaluate to:

io(s)_Cp/H (_l,f<26(s_2n)+2cos(w.d)_2co s (2n-1)rc _ _ sm(w,s)-_-T_
p_c_ "2 s --w. J

[ -1+ 2 " I2cos(w._') sin(%_')
I2(s)-(Cp/H_2 -1e-$_ppCp

%/(2 __ _ C pwhere w, = n_l)2(irc/2)2__-_/2_, __ _H ,and _'---s
pvcp H



Figures 15 and 16 show plots of the impulse response functions Io and 12 for

different flow resistances. Note that the delta functions correspond to reflections of the

impulse. The impulse response functions exhibit a relaxation and reflection structure.

After the impulse, there is a velocity relaxation (temporal wake) that results from the

flow resistance. The relaxation time scales with p_/_. If the damping is not too great,

wave reflections (discontinuities) are evident. The reflection time scale corresponds to:

H/cp. In Figure 15, Io is shown. For Io(s) the delta function amplitudes scale with

1/ppcp. For Io(s), the relaxation structure scales with _H/ppCp, and increases with

increasing _H/ppc p .
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Figure 15. Plots of impulse response function, Io versus dimensionless time.



In Figure 16, I2 is shown. For I2(S) and I4(s) the relaxation structure decreases with

increasing _H/ppcp. The lower flow resistance facilitates bulk reaction. The reflection

structure is always stronger for lower lffiJHIppcp , sihce reflections decay as e
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Figure 16. Plots of impulse response function, I2 versus dimensionless time.

Numerical Implementation

Implementation of the boundary condition in a time-domain numerical calculation

scheme for duct acoustics would require saving information about pressure and pressure

derivatives on the liner surface from previous time steps. However, since it was assumed

that effective liner designs would embody high absorption, it was thought likely that the

liner dynamics would be highly damped. This would limit the amount of information

that would have to have been retained from previous time steps in order to evaluate the

superposition integral.



Summary & Conclusions

Earlier results were extended to higher frequency. This was done by first working

up from the low frequency end, adding higher order corrections. These corrections were

found to extend the boundary condition to somewhat higher frequencies (into the mid

frequency range). The final result combined aspects of both the high and low frequency

approximations, and yielded good accuracy across the entire frequency range for realistic

values of porous media parameters (flow resistance, etc.). The form of the boundary

condition was similar to earlier work, but the coefficients were chosen differently.

Expressions for the bulk reaction coefficients were found for a layer of rigid

homogeneous porous material.

The restriction on the boundary condition which has been developed is that the

liner have a fairly high flow resistance, which is typical of realistic porous liners. The

high flow resistance limits the degree of communication between points along the liner

surface by damping the waves within the liner. For the boundary condition to work well,

the dissipation length scale must be on the order of the liner thickness at high frequency,

which is a realistic condition. Comparisons of absorption coefficient have shown

excellent agreement for different levels of approximation, and different incidence angles.

The boundary condition approach retains considerable simplicity in comparison to

a full solution for wave motion within a liner. Furthermore, the coefficients in this

boundary condition can be measured experimentally, as well as calculated theoretically.

Therefore the boundary condition retains a significant advantage of the traditional

impedance approach. Although the approach was developed for a simple porous media

layer, the method can be generalized to a much broader class of liner configurations. In

fact, the approach is general in much the same way that the impedance concept itself is

general, namely that the same representation can be applied to a broad variety of

materials and dynamic systems.

An important aspect is the possibility that the frequency dependent coefficients

B2(m), and B4(03) can be determined experimentally. It may be difficult, or inconvenient,

to predict liner behavior from basic material properties, especially for complicated multi-

layer liner designs. In fact the necessary material properties may not be well known and

may themselves require measurement. A more realistic approach may be to measure the

boundary condition coefficients directly. The normal incidence impedance zn(o.)) can be

measured by traditional means using an impedance tube. Reference [3] showed how, in

general, bulk reaction coefficients can be measured at low frequency using a "bulk

reaction duct," a device invented for that purpose. The bulk reaction duct is similar in

general concept to an impedance tube, but the absorptive liner is placed on a side wall of

the rectangular duct. Properties of the sound field are measured to infer the bulk reaction

coefficients given the normal impedance and the functional form of the boundary
condition.

A time domain version of the boundary condition was constructed from inverse

Fourier transforms and impulse response functions. The frequency dependent

coefficients in the frequency domain boundary condition Zn(f.0),B2(03), and B4(fll) for the

simple porous layer can be fit by functional forms that facilitate transform inversion. The

time domain version can be implemented in a straight-forward manner into a numerical

code.



References

1. "State of the Art in Duct Acoustics," P.G. Vaidya and P. D. Dean, AIAA paper No.

77-1279, presented at the AIAA 4 th Aeroacoustics Conference (1977).

2. "A Study of Bulk Reacting Porous Sund Absorbers and a New Boundary Condition

for Thin Porous Layers," D. B. Bliss, J. Acoust. Soc. Am. 71(3), 1982.

3. "Experimental Investigation of the Bulk Reaction Boundary Condition," D. B. Bliss

and S. E. Burke, J. Acoust. Soc. Am., 71(30), 1982.


